Sākums > Programmēšana > Neirālais tīkls (programmēšana Java platformā)

Neirālais tīkls (programmēšana Java platformā)

12 Novembris, 2009. Komentēt Go to comments

Image via Wikipedia

Piedāvāju interesentiem savu pamatkodu neirālā tīkla implementācijai Java SE6,

package neuralnetwork;

public class NNx {

    public NNx() {
        w = new float[2];
        x = new float[4][2];
        s = new float[4][2];
        t = new float[4];

    }

    private void Initialization() {
        System.out.println("Giving input values");
        System.out.println("");
        //i integrated AND logical statement
        //i dont know why, but it didnt worked till i defined it for t[0],t[1],t[2],t[3]
        s[0][0] = 0;
        s[0][1] = 0;
        t[0] = -1;
        s[1][0] = 1;
        s[1][1] = 0;
        t[1] = -1;
        s[2][0] = 0;
        s[2][1] = 1;
        t[2] = -1;
        s[3][0] = 1;
        s[3][1] = 1;
        t[3] = 1;
        for (int i = 0; i < w.length; i++) {
            w[i] = (float)Math.random();
        }

        b = 1;
    }

    private void Training() {
        float sum = 0;

        for (int i = 0; i < x.length; i++) {
            for (int j = 0; j < x[i].length; j++) {
                x[i][j] = s[i][j];

            }

        }
        System.out.println("Network training in progress :");
        System.out.println("");

        for (iteration = 0; iteration < max_iteration; iteration++) {

            System.out.println("step " + (iteration + 1) + " done");
            for (int i = 0; i < x.length; i++) {

                sum = 0;
                for (int j = 0; j < x[i].length; j++) {
                    sum += x[i][j] * w[j];
                }
                y_in = b + sum;
                if (y_in >= threshold) {
                    y = 1;
                } else if (y_in < threshold) {
                    y = -1;
                }

                if (y != t[i]) {
                    for (int j = 0; j < w.length; j++) {
                        w[j] = w[j] + (learn_rate * t[i] * x[i][j]);
                    }
                    b = b + learn_rate * t[i];

                }
            }
        }
        System.out.println("");
        System.out.println("Solution has been found");
        System.out.println("");
    }

    private void Results() {
        float sum = 0;
        float[] res_output = new float[4];

        for (int i = 0; i < x.length; i++) {
            for (int j = 0; j < x[i].length; j++) {
                x[i][j] = s[i][j];
            }
        }

        System.out.println("Results : (for checking)");
        for (int i = 0; i < x.length; i++) {
            sum = 0;
            for (int j = 0; j < x[i].length; j++) {
                sum += x[i][j] * w[j];
            }
            y_in = b + sum;
            if (y_in >= threshold) {
                y = 1;
            } else if (y_in < threshold) {
                y = -1;
            }
            if (y == -1) {
                res_output[i] = 0;
            } else {
                res_output[i] = 1;
            }

        }
        System.out.println("");
        System.out.println("0 AND 0 = " + res_output[0]);
        System.out.println("0 AND 1 = " + res_output[1]);
        System.out.println("1 AND 0 = " + res_output[2]);
        System.out.println("1 AND 1 = " + res_output[3]);
    }

    public void RunPerceptron() {
        learn_rate = (float) 0.5;
        threshold = (float) 0.2;
        max_iteration = 10;
        Initialization();
        Training();
        Results();
    }

    public static void main(String[] args) {
        NNx perceptron = new NNx();
        perceptron.RunPerceptron();
    }
    private float[] w;
    private float b;
    private float[][] x;
    private float[][] s;
    private float y;
    private float learn_rate;
    private float threshold;
    private float[] t;
    private float y_in;
    private int iteration;
    private int max_iteration;
}

Tātad tīkls atrisina elementāru AND funkciju izmantojot leraning algoritmu un single – layer elementus. PM ja ir kādi jautājumi, kodu var droši pārizmantot ;)

Reblog this post [with Zemanta]
  1. Vēl nav komentāru.
  1. No trackbacks yet.

Komentēt

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Mainīt )

Twitter picture

You are commenting using your Twitter account. Log Out / Mainīt )

Facebook photo

You are commenting using your Facebook account. Log Out / Mainīt )

Google+ photo

You are commenting using your Google+ account. Log Out / Mainīt )

Connecting to %s

%d bloggers like this: